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Abstract

Potential function and complex function in the elliptic coordinate system are employed to solve the problem of scat-
tering harmonic plane waves by multiple elliptic cavities in water saturated soil medium. The steady state Biot�s
dynamic equations of poroelasticity are uncoupled into Helmholtz equations via given potentials. The stresses and pore
water pressures are obtained by using complex functions in elliptic coordinates with certain boundary conditions.
Finally, the dynamic stresses for the case of two interacting elliptic cavities are obtained and discussed in details via
a numerical example.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Diffraction of elastic waves by obstacles such as cavities, cracks, and inserts has been investigated by many
researchers. Investigation on dynamic stress concentrations in solids is very significant in the study of dy-
namic strength of materials and in the design of underground structures subject to ground blasting waves.
Scattering elastic waves by a single cavity has been treated by many researchers. Zitron (1967) dealt with the
multiple scattering of plane elastic waves by two arbitrary cylinders in a homogeneous medium. Gamer
(1977) used wave function expansion method to study dynamic stress concentration factor at the surface
of a semi-circular cavity in an elastic half-space excited by plane harmonic wave. Liu et al. (1981) presented
an analytical method for cylindrical canyon of arbitrary shape and for incident plane wave by using complex
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functions and mapping techniques. Sancar and Pao (1981) gave solutions for the scattering of plane har-
monic pressure waves by two cylindrical cavities in an elastic solid by using the eigenfunction expansion
methods. Datta et al. (1984) studied the dynamic stresses and displacements around cylindrical cavities of
various shapes in an elastic medium by employing a combined approach of finite element method (FEM)
and the method of eigenfunction expansions. Several other researchers also studied the scattering of elastic
wave by cavity embedded in a poroelastic medium. Mei and Foda (1981) and Mei et al. (1984) introduced a
simple method for a circular cavity of arbitrary radius in a poroelastic medium and for both P and SV inci-
dent waves by using the boundary layer approximation. Norris (1985) obtained the solution for a point load
in an unbounded fluid–saturated porous solid. Zimmerman and Stern (1993) studied the problem of wave
diffraction by a spherical cavity in an infinite poroelastic soil medium by using the boundary element method
(BEM). Degrande et al. (1998) studied harmonic and transient wave propagation in multilayered saturated
and unsaturated porous medium. Kattis et al. (2003) used BEM to solve the problem of incident harmonic P
and SV plane waves by tunnels in an infinite poroelastic saturated soil.

It is obviously that FEM and BEM have been successfully applied to solve wave diffraction problem in
various dynamic poroelastic medium. In this paper, the complex variable method in multi-polar coordinate
system is employed to solve the scatter of plane wave by elliptic cavities embedded in an infinite saturated
soil. The proposed method can be applied to solve the problem of scattering harmonic plane wave through
cavities in saturated soil with less computational effort. The behavior of the saturated soil is governed by
Biot�s consolidation theory. Then, these equations are decoupled via introducing the potential functions
and reduced to Helmholtz equations that the potentials satisfy. Applying the boundary conditions of the
solid matrix and the fluid, the solutions of dynamic stress concentration and pore pressure concentration
of plane wave by two elliptic cavities in the saturated soil are presented.
2. Governing equations and general solutions

Based on Biot�s theory for a two-phased material, the constitutive relations for saturated soil are ex-
pressed as (Biot, 1941, 1956, 1962)
rij ¼ 2leij þ kdije� adijpf ði; j ¼ x; yÞ ð1Þ

pf ¼ �aMeþM# ð2Þ

e ¼ ui;i; # ¼ �wi;i ð3Þ
where rij is the total stress components of the bulk material; eij and e are the strain component and dilata-
tion of the solid matrix, respectively; k and l are Lamé�s constants; dij is Kronecker delta; # is the variation
of fluid content per unit reference volume; a and M are Biot�s parameters, respectively; pf is the pore
pressure.

The equations of motion for the poroelastic medium can be expressed in terms of displacements, ui and
wi, as
lui;jj þ ðkþ a2M þ lÞuj;ji þ aMwj;ji ¼ q€ui þ qf €wi ð4Þ

aMuj;ji þMwj;ji ¼ qf€ui þ
qf

n
€wi þ

g
k
_wi ð5Þ
where ui is the solid displacement; wi is the fluid displacement; q and qf are the mass densities of the bulk
material and the pore fluid, respectively; q = (1 � n)qs + qf, qs is the soil density; n is porosity; k is the per-
meability; g is the fluid viscosity; over-dots denote the derivatives of field variables with respect to time t.
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Three potentials are adopted: the scalar potentials uf and us to represent the fast and slow compressible
waves, respectively and the vector potential wk to represent the shear wave. These potentials relate to ui and
pf are expressed as follows (Zimmerman and Stern, 1993):
ui ¼ u;i þ eijkwk;j ¼ uf ;i þ us;i þ eijkwk;j ð6Þ

pf ¼ Afuf ;ii þ Asus;ii ð7Þ
where Af and As are amplitude ratios for fast and slow wave, respectively; and eijk is tensor transformation.
When considering the time harmonic vibration of frequency - by the term e�i-t, where i ¼

ffiffiffiffiffiffiffi
�1

p
, for

brevity, the term e�i-t is suppressed henceforth from all expressions in the sequel. Substituting Eq. (2)
and Eqs. (6) and (7) into Eq. (4), the following formula is obtained:
½ðkþ 2l� b2AfÞuf ;jj þ b3uf �;i þ ½ðkþ 2l� b2AsÞus;jj þ b3us�;i þ eiml½lwl;jj þ b3wl�;m ¼ 0 ð8Þ
In order to satisfy Eq. (8), the expressions in braces should be equal to zero independently. Thus, Eq. (8)
can be written in the following form:
ðkþ 2l� b2AfÞuf;jj þ b3uf ¼ 0 ð9Þ

ðkþ 2l� b2AsÞus;jj þ b3us ¼ 0 ð10Þ

lwi;jj þ b3wi ¼ 0 ð11Þ
where
b1 ¼ � qf-
2

n
� ig-

k
; b2 ¼ aþ qf-

2

b1

; b3 ¼ q-2 þ q2
f-

4

b1

ð12Þ
Substituting Eqs. (2) and (3) into Eq. (5), one obtains
pf ;ii �
b1

M
pf � ðab1 þ qf-

2Þui;i ¼ 0 ð13Þ
Substituting Eqs. (6) and (7) into Eq. (13), one has
½Afuf ;ii þ ðb5Af � b4Þuf �;jj þ ½Asus;ii þ ðb5As � b4Þus�;jj ¼ 0 ð14Þ
In order to satisfy Eq. (14), the expressions in braces should be equal to zero independently. Thus, one has
Afuf;ii þ ðb5Af � b4Þuf ¼ 0 ð15Þ

Asus;ii þ ðb5As � b4Þus ¼ 0 ð16Þ
where
b4 ¼ ab1 þ qf-
2; b5 ¼ �b1=M ð17Þ
From Eqs. (9) and (10) and Eqs. (15) and (16), one has
A2
f ;s þ

b3 � ðkþ 2lÞb5 � b2b4

b2b5

Af ;s þ
ðkþ 2lÞb4

b2b5

¼ 0 ð18Þ
From Eqs. (9)–(11) and (15) and (16), each component uf,s and w must satisfy Helmholtz equation of the
following form:
r2uf þ k2fuf ¼ 0 ð19Þ
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r2us þ k2sus ¼ 0 ð20Þ

r2wþ k2tw ¼ 0 ð21Þ

where
k2f ¼ b3=ðkþ 2l� b2AfÞ ¼ ðb5Af � b4Þ=Af ð22Þ

k2s ¼ b3=ðkþ 2l� b2AsÞ ¼ ðb5As � b4Þ=As ð23Þ

k2t ¼ b3=l ð24Þ

where kf, ks, and kt are the complex wave numbers associated with the fast wave, slow wave, and shear
wave, respectively. If selecting Im(kf,s,t) > 0 to give a wave that decays as the wave propagates outward,
there is Re(kf) < Re(ks).
3. Expressions of displacements, stresses, and pore pressures

The expressions of displacements ui and wi (i = x,y) and pore pressure pf can be expressed as
ux ¼
ouf

ox
þ ous

ox
þ ow

oy
ð25Þ

uy ¼
ouf

oy
þ ous

oy
� ow

ox
ð26Þ

wx ¼ g1
ouf

ox
þ g2

ous

ox
þ a1

ow
oy

ð27Þ

wy ¼ g1
ouf

oy
þ g2

ous

oy
� a1

ow
ox

ð28Þ

r0
x ¼ kðr2uf þr2usÞ þ 2l

o2uf

ox2
þ o2us

ox2
þ o2w
oyox

� �
ð29Þ

r0
y ¼ kðr2uf þr2usÞ þ 2l

o2uf

oy2
þ o2us

oy2
þ o2w
oxoy

� �
ð30Þ

r0
xy ¼ l 2

o2uf

oyox
þ 2

o2us

oyox
þ o2w

oy2
� o2w

ox2

� �
ð31Þ

pf ¼ �Afk
2
fuf � Ask

2
sus ð32Þ
where superscript ( 0) denotes effective stress and
g1 ¼ a1 � a2Afk
2
f ; g2 ¼ a1 � a2Ask

2
s ; a1 ¼

qf-
2

b1

; a2 ¼ � 1

b1

ð33Þ
If introducing complex variables z = x + iy, �z ¼ x� iy and let c to represent polar coordinate rotary
angle, the displacements, stresses, and pore pressures are expressed as:
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u~x þ iu~y ¼ 2
o

oz
ðuf þ us � iwÞe�ic ð34Þ

u~x � iu~y ¼ 2
o

oz
ðuf þ us þ iwÞeic ð35Þ

w~x þ iw~y ¼ 2
o

oz
ðg1uf þ g2us � a1iwÞe�ic ð36Þ

w~x � iw~y ¼ 2
o

oz
ðg1uf þ g2us þ a1iwÞeic ð37Þ

r0
~x � ir0

x~y ¼ �ðkþ lÞðk2fuf þ k2susÞ þ l
o
2

oz2
ðuf þ us þ iwÞe2ic ð38Þ

r0
~x þ ir0

x~y ¼ �ðkþ lÞðk2fuf þ k2susÞ þ l
o
2

o�z2
ðuf þ us � iwÞe�2ic ð39Þ
As shown in the above equations, pore pressure is not changed in the new coordinate.
4. Solutions of boundary problems

For stress boundary problems, the two cases are considered: permeable boundary and impermeable
boundary. For permeable boundary, the pore pressure on the boundary of cavity is zero. For impermeable
boundary, the normal displacement of fluid relative to the solid matrix is zero.

Using Eqs. (38) and (39), the stresses on the boundary of cavity can be expressed as
r~x � irx~y ¼ afuf þ asus þ
o
2

oz2
ðuf þ us þ iwÞe2ic ¼ f1 � if2 ð40Þ

r~x þ irx~y ¼ afuf þ asus þ
o
2

o�z2
ðuf þ us � iwÞe�2ic ¼ f1 þ if2 ð41Þ
where f1 and f2 are the normal and tangential total stresses and
af ¼ aAfk
2
f � ðkþ lÞk2f ð42Þ

as ¼ aAsk
2
s � ðkþ lÞk2s ð43Þ
For permeable boundary, the pore pressure is zero. Eq. (32) can be written as
pf ¼ �Afk
2
fuf � Ask

2
sus ¼ 0 ð44Þ
For impermeable boundary, the normal displacement of fluid to solid matrix is zero. Substituting Eq.
(36) into Eq. (37), one obtains
w~x ¼
o

oz
ðg1uf þ g2us þ a1iwÞeic þ

o

o�z
ðg1uf þ g2us � a1iwÞe�ic ¼ 0 ð45Þ
Using Eqs. (40) and (41) and Eq. (44) to solve the permeable boundary problems and Eqs. (40) and (41)
and Eq. (45) to solve the impermeable boundary problem.
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5. Plane wave scatter of multiple cavities

Fig. 1 illustrates the problem of multiple cavities in saturated soil, which will be analyzed in this paper. In
the steady state case, the incident plane harmonic wave can be expressed as
ui ¼ u0 exp½ikf ;sðx cos bþ y sin bÞ�e�i-t ð46Þ

By introducing complex variables z = x + iy, �z ¼ x� iy, the incident plane wave ui can also be written as

the following formula:
ui ¼ u0 exp
ikf;s
2

ð�zeib þ ze�ibÞ
� �

e�i-t ð47Þ
where superscripts i denotes the incident components of the waves; kf,s denotes incident fast wave and slow
wave, respectively; b is the angle of incident wave; u0 is an amplitude of the incident wave.

For one scattering wave, the general solutions of Eqs. (19) and (20) and Eq. (21) of the jth cavity may be
expressed in terms of Hankel function as follows.
us
fj ¼

X1
n¼�1

ajnH ð1Þ
n ðkf jzjjÞ

zj
jzjj

� �n

ð48Þ

us
sj ¼

X1
n¼�1

bjnH ð1Þ
n ðksjzjjÞ

zj
jzjj

� �n

ð49Þ

ws
j ¼

X1
n¼�1

cjnH ð1Þ
n ðktjzjjÞ

zj
jzjj

� �n

ð50Þ
where superscripts s denotes the scatter components of the waves; H ð1Þ
n ð� � �Þ is the Hankel function of the

first kind of order n; ajn, bjn, cjn are arbitrary functions to be determined from the boundary conditions
of the jth cavities (j = 1 � � � m).
xi

yi

yj

xj

di

dj

x

y

Oi

O

Fig. 1. Multiple cavities in saturated half space.
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The total scatter waves can be expressed as
us
f ¼

Xm
j¼1

X1
n¼�1

ajnH ð1Þ
n ðkf jz� djjÞ

z� dj

jz� djj

� �n

ð51Þ

us
s ¼

Xm
j¼1

X1
n¼�1

bjnH ð1Þ
n ðksjz� djjÞ

z� dj

jz� djj

� �n

ð52Þ

ws ¼
Xm
j¼1

X1
n¼�1

cjnH ð1Þ
n ðktjz� djjÞ

z� dj

jz� djj

� �n

ð53Þ
where dj is the distance between the origin of jth cavities and the origin of total coordinate system. For mul-
tiple cavities of arbitrary shape in saturated soil, the total wave can be expressed as
uf ¼ ui
f þ
Xm
j¼1

us
fj ¼ ui

f þ us
f ; us ¼ ui

s þ
Xm
j¼1

us
sj ¼ ui

s þ us
s; w ¼ wi þ

Xm
j¼1

ws
j ¼ wi þ ws ð54Þ
6. Stress boundary problem of multiple cavities

For the jth cavities (j = 1,2, . . .,m), the stresses on the boundary of cavity can be expressed as
r~xj � irx~yj ¼ afuf þ asus þ
o2

oz2j
ðuf þ us þ iwÞe2icj ¼ f1j � if2j ð55Þ

r~xj þ irx~yj ¼ afuf þ asus þ
o2

o�z2j
ðuf þ us � iwÞe�2icj ¼ f1j þ if2j ð56Þ
where f1j and f2j are the normal and tangential total stresses of the jth cavities.
In the local coordinate system (oj,xj,yj),zj = xj + iyj, (j = 1,2, . . .,m), the curvilinear equation of the jth

cavities of arbitrary shape is as follows.
f ðxj; yjÞ ¼ 0 ð57Þ
The angle cj in arbitrary point on the boundary of cavities is
cj ¼ tg�1
of =oyj
of =oxj

� �
ð58Þ
If selecting elliptic cavities as an example, the equation of the jth elliptic cavities can be expressed as
f ðxj; yjÞ ¼
x2j
a2j

þ
y2j
b2j

� 1 ¼ 0 ð59Þ
where a and b are long axial radius and short axial radius, respectively.
On the boundary of the jth elliptic cavities
xj ¼ rj cos h; yj ¼ rj sin h ð60Þ

rj ¼
ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2hþ a2j
b2j
sin2h

r ð61Þ
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cj ¼ tg�1
a2j
b2j

tgh

 !
ð62Þ
where c = cj, z ¼ zjeiaj þ dj, zj = rje
ih.

From Eqs. (55) and (56), one obtains
X3
p¼1

Xm
i¼1

Xn¼1

n¼�1
E1
kpinxpin ¼ r1kj ðk ¼ 1; 2; j ¼ 1; 2; . . . ;mÞ ð63Þ
where
E1
11in ¼ afH ð1Þ

n ðkf jfijjÞ
fij
jfijj

� �n

þ lk2fH
ð1Þ
n�2ðkf jfijjÞ

fij
jfijj

� �n�2

e2icj ð64Þ

E1
12in ¼ asH ð1Þ

n ðksjfijjÞ
fij
jfijj

� �n

þ lk2sH
ð1Þ
n�2ðksjfijjÞ

fij
jfijj

� �n�2

e2icj ð65Þ

E1
13in ¼ ilk2tH

ð1Þ
n�2ðktfijjÞ

fij
jfijj

� �n�2

e2icj ð66Þ

E1
21in ¼ afH ð1Þ

n ðkf jfijjÞ
fij
jfijj

� �n

þ lk2fH
ð1Þ
nþ2ðkf jfijjÞ

fij
jfijj

� �nþ2

e�2icj ð67Þ

E1
22in ¼ asH ð1Þ

n ðksjfijjÞ
fij
jfijj

� �n

þ lk2sH
ð1Þ
nþ2ðksjfijjÞ

fij
jfijj

� �nþ2

e�2icj ð68Þ

E1
23in ¼ �ilk2tH

ð1Þ
nþ2ðktjfijjÞ

fij
jfijj

� �nþ2

e�2icj ð69Þ

r11j ¼ f1j � if2j � afu
i
f � asu

i
s � l

o
2

oz2j
ðui

f þ ui
s þ iwiÞe2icj ð70Þ

r12j ¼ f1j þ if2j � afu
i
f � asu

i
s � l

o2

o�z2j
ðui

f þ ui
s � iwiÞe�2icj ð71Þ

x1in ¼ ain; x2in ¼ bin; x3in ¼ cin ð72Þ
where
nij ¼ zjeiaj þ dj � di ð73Þ
Multiplying both sides of Eq. (63) with e�ish, and integrating on the interval [�p,p], one obtains
X3
p¼1

Xm
i¼1

Xn¼1

n¼�1
E1s
kpinxpin ¼ r1skj ðk ¼ 1; 2; j ¼ 1; 2; . . . ;m; s ¼ 0;�1;�2; . . .Þ ð74Þ



J.H. Wang et al. / International Journal of Solids and Structures 42 (2005) 4295–4310 4303
where
E1s
kpin ¼

1

2p

Z p

�p
E1
kpine

�ish dh ðs ¼ 0;�1;�2; . . .Þ ð75Þ

r1skj ¼
1

2p

Z p

�p
r1kje

�ish dh ðs ¼ 0;�1;�2; . . .Þ ð76Þ
For permeable boundary, the pore pressure of the jth cavities is zero and Eq. (44) can be written as
pfj ¼ �Afk
2
fuf � Ask

2
sus ¼ 0 ð77Þ
For impermeable boundary, the normal displacement of fluid to solid matrix of the jth cavities is zero
and Eq. (45) can be written as
w~xj ¼
o

ozj
ðg1uf þ g2us þ a1iwÞeicj þ

o

o�zj
ðg1uf þ g2us � a1iwÞe�icj ¼ 0 ð78Þ
Solving Eq. (77), one obtains
X2
p¼1

Xm
i¼1

X1
n¼�1

E2
pinxpin ¼ r2j ðj ¼ 1; 2; . . . ;mÞ ð79Þ
where
E2
1in ¼ �Afk

2
fH

ð1Þ
n ðkf jfijjÞ

fij
jfijj

� �n

ð80Þ

E2
2in ¼ �Ask

2
sH

ð1Þ
n ðksjfijjÞ

fij
jfijj

� �n

ð81Þ

r2j ¼ Afk
2
fu

i
f þ Ask

2
su

i
s ð82Þ
Multiplying both sides of Eq. (79) with e�ish, and integrating on the interval [�p,p], one obtains
X2
p¼1

Xm
i¼1

X1
n¼�1

E2s
pinxpin ¼ r2sj ðj ¼ 1; 2; . . . ;m s ¼ 0;�1;�2; . . .Þ ð83Þ

E2s
pin ¼

1

2p

Z p

�p
E2
pine

�ish dh ðs ¼ 0;�1;�2; . . .Þ ð84Þ

r2sj ¼ 1

2p

Z p

�p
r2j e

�ish dh ðs ¼ 0;�1;�2; . . .Þ ð85Þ
From Eq. (78), there is
X3
p¼1

Xm
i¼1

X1
n¼�1

E3
pinxpin ¼ r3j ðj ¼ 1; 2; . . . ;mÞ ð86Þ
where
E3
1in ¼

g1kf
2

H ð1Þ
n�1ðkf jfijjÞ

fij
jfijj

� �n�1

eicj � g1kf
2

H ð1Þ
nþ1ðkf jfijjÞ

fij
jfijj

� �nþ1

e�icj ð87Þ
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E3
2in ¼

g2ks
2

H ð1Þ
n�1ðksjfijjÞ

fij
jfijj

� �n�1

eicj � g2ks
2

H ð1Þ
nþ1ðksjfijjÞ

fij
jfijj

� �nþ1

e�icj ð88Þ

E3
3in ¼

ia1kt
2

H ð1Þ
n�1ðktjfijjÞ

fij
jfijj

� �n�1

eicj þ ia1kt
2

H ð1Þ
nþ1ðktjfijjÞ

fij
jfijj

� �nþ1

e�icj ð89Þ

r3j ¼ � o

ozj
ðg1ui

f þ g2u
i
s þ a1iw

iÞeicj � o

o�zj
ðg1ui

f þ g2u
i
s � a1iw

iÞe�icj ð90Þ
Multiplying both sides of Eq. (86) with e�ish, and integrating on the interval [�p,p], one obtains
X3
p¼1

Xm
i¼1

X1
n¼�1

E3s
pinxpin ¼ r3sj ðj ¼ 1; 2; . . . ;m; s ¼ 0;�1;�2; . . .Þ ð91Þ
Incident wave

a a

b

δ

β

Fig. 3. Inclusion of pressure wave to two same elliptic cavities in saturated soil.
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Fig. 2. Comparison of calculated between present result and Gai (1985).
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E3s
pin ¼

1

2p

Z p

�p
E3
pine

�ish dh ðs ¼ 0;�1;�2; . . .Þ ð92Þ

r3sj ¼ 1

2p

Z p

�p
r3j e

�ish dh ðs ¼ 0;�1;�2; . . .Þ ð93Þ
Eqs. (74), (83) and (91) form a set of infinite algebraic equations for determining the functions ajn, bjn, and
cjn. Eqs. (74) and (83) are selected to solve the problem of permeable boundary and Eqs. (74) and (91) are
selected to solve the problem of impermeable boundary.
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7. Numerical results

In engineering practice, the dynamic stress concentration factor is most significant aspects in the study of
wave propagation in the saturated soil. In this study, dynamic stress concentration factors will be calculated
in the case of incident plane wave is fast wave. The dynamic stress concentration factor is defined as the
ratio of tangential effective stress to the maximum amplitude of the incident effective stress at the same
point
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r� ¼ r~y

r0

ð94Þ
where
r0 ¼ Re½�ðkþ 2lÞk2fu0� ð95Þ

For the case of impermeable condition, the pore pressure concentration factor is defined as the ratio of

the pore pressure on the boundary of cavity to the maximum amplitude of pore pressure at the same point
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p�f ¼
pf
pf 0

ð96Þ
where
pf 0 ¼ Reð�Afk
2
fu0Þ ð97Þ
In order to confirm the accuracy of the present method, it is assumed that the saturated soil is the ideal
elastic medium. Fig. 2 shows a comparison of proposed solution with that reported by Gai (1985). As illus-
trated in Fig. 2, it is obviously that the accuracy of proposed solution is higher.
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In the following analyses, the problem of two elliptic cavities as illustrated in Fig. 3 is considered. The
two elliptic cavities are embedded in the saturated soil. The parameters are: b = 90�; qs = 2500 kg/m3;
qf = 1000 kg/m3; n = 0.3; l = 1.0 · 107 Pa; passion ratio m = 0.4; a = 0.999; M = 1.0 · 108 Pa;
g = 1.0 · 10�2 Pa s; k = 1.0 · 10�7 m2; b/a = 0.75; d/a = 2.5, 6.5. Figs. 4–6 show the distributions of dy-
namic stress concentration factors along the boundary of left cavity under the cases of permeable condition
at dimensionless fast wave number Re(kf)a = 0.1, 1.0, 2.0. Figs. 7–12 show the distributions of dynamic
stress concentration factors and pore pressure concentration factors along the boundary of left cavity in
impermeable condition at Re(kf)a = 0.1, 1.0, 2.0.
8. Conclusions

The complex variable method has been employed to solve the problem of scattering of plane harmonic
wave by considering two elliptic cavities embedded in saturated soil. The result shows that the influence of
dimensionless distance d/a and dimensional wave number Re(kf)a are more visible in the dynamic stress
concentration factors. When dimensionless wave number Re(kf)a = 0.1, the dynamic stresses at d/a = 2.5
are greater than those at d/a = 6.5. The dynamic stress concentration factors in permeable condition are
smaller than those in impermeable condition. The dynamic stresses and pore pressures decrease with the
incident wave number increasing. For the case of impermeable boundary condition, the pore pressures
are less than dynamic stresses.
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