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Abstract

Potential function and complex function in the elliptic coordinate system are employed to solve the problem of scat-
tering harmonic plane waves by multiple elliptic cavities in water saturated soil medium. The steady state Biot’s
dynamic equations of poroelasticity are uncoupled into Helmholtz equations via given potentials. The stresses and pore
water pressures are obtained by using complex functions in elliptic coordinates with certain boundary conditions.
Finally, the dynamic stresses for the case of two interacting elliptic cavities are obtained and discussed in details via
a numerical example.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Diffraction of elastic waves by obstacles such as cavities, cracks, and inserts has been investigated by many
researchers. Investigation on dynamic stress concentrations in solids is very significant in the study of dy-
namic strength of materials and in the design of underground structures subject to ground blasting waves.
Scattering elastic waves by a single cavity has been treated by many researchers. Zitron (1967) dealt with the
multiple scattering of plane elastic waves by two arbitrary cylinders in a homogeneous medium. Gamer
(1977) used wave function expansion method to study dynamic stress concentration factor at the surface
of a semi-circular cavity in an elastic half-space excited by plane harmonic wave. Liu et al. (1981) presented
an analytical method for cylindrical canyon of arbitrary shape and for incident plane wave by using complex
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functions and mapping techniques. Sancar and Pao (1981) gave solutions for the scattering of plane har-
monic pressure waves by two cylindrical cavities in an elastic solid by using the eigenfunction expansion
methods. Datta et al. (1984) studied the dynamic stresses and displacements around cylindrical cavities of
various shapes in an elastic medium by employing a combined approach of finite element method (FEM)
and the method of eigenfunction expansions. Several other researchers also studied the scattering of elastic
wave by cavity embedded in a poroelastic medium. Mei and Foda (1981) and Mei et al. (1984) introduced a
simple method for a circular cavity of arbitrary radius in a poroelastic medium and for both P and SV inci-
dent waves by using the boundary layer approximation. Norris (1985) obtained the solution for a point load
in an unbounded fluid-saturated porous solid. Zimmerman and Stern (1993) studied the problem of wave
diffraction by a spherical cavity in an infinite poroelastic soil medium by using the boundary element method
(BEM). Degrande et al. (1998) studied harmonic and transient wave propagation in multilayered saturated
and unsaturated porous medium. Kattis et al. (2003) used BEM to solve the problem of incident harmonic P
and SV plane waves by tunnels in an infinite poroelastic saturated soil.

It is obviously that FEM and BEM have been successfully applied to solve wave diffraction problem in
various dynamic poroelastic medium. In this paper, the complex variable method in multi-polar coordinate
system is employed to solve the scatter of plane wave by elliptic cavities embedded in an infinite saturated
soil. The proposed method can be applied to solve the problem of scattering harmonic plane wave through
cavities in saturated soil with less computational effort. The behavior of the saturated soil is governed by
Biot’s consolidation theory. Then, these equations are decoupled via introducing the potential functions
and reduced to Helmholtz equations that the potentials satisfy. Applying the boundary conditions of the
solid matrix and the fluid, the solutions of dynamic stress concentration and pore pressure concentration
of plane wave by two elliptic cavities in the saturated soil are presented.

2. Governing equations and general solutions

Based on Biot’s theory for a two-phased material, the constitutive relations for saturated soil are ex-
pressed as (Biot, 1941, 1956, 1962)

0y = 2ue;; + Adye — adypy  (i,j = x,) (1)
pr = —oMe + MY (2)
e = u,-v,«, 19 = —Wl‘_j (3)

where ¢, is the total stress components of the bulk material; ¢; and e are the strain component and dilata-
tion of the solid matrix, respectively; /4 and p are Lamé’s constants; d,; is Kronecker delta; ¥ is the variation
of fluid content per unit reference volume; « and M are Biot’s parameters, respectively; pr is the pore
pressure.

The equations of motion for the poroelastic medium can be expressed in terms of displacements, u; and
w;, as

‘uu,-‘jj + (/1 + OCZM + ,u)uj’j, + aMWjﬂj,' = pu, -+ pfl./l./i (4)
oMu; ;i + Mw; j; = peit; + o Vi + A (5)

where u; is the solid displacement; w; is the fluid displacement; p and p; are the mass densities of the bulk
material and the pore fluid, respectively; p = (1 — n)ps + pr, ps 1s the soil density; n is porosity; k is the per-
meability; # is the fluid viscosity; over-dots denote the derivatives of field variables with respect to time z.
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Three potentials are adopted: the scalar potentials ¢ and ¢ to represent the fast and slow compressible
waves, respectively and the vector potential s, to represent the shear wave. These potentials relate to u; and
pr are expressed as follows (Zimmerman and Stern, 1993):

U= @, + eijklpk,j = @r; + @5; + eiik‘ﬁk,j (6)

Dr = Ae@p i + As @ (7)

where Ay and A4, are amplitude ratios for fast and slow wave, respectively; and e is tensor transformation.

When considering the time harmonic vibration of frequency @ by the term e '™ where i = v/—1, for
brevity, the term e '™ is suppressed henceforth from all expressions in the sequel. Substituting Eq. (2)
and Egs. (6) and (7) into Eq. (4), the following formula is obtained:

(2420 = Bodr)pp j; + Byelsi + [(2 + 200 — Bods) @y + Baoglsi + e[l + B3], = 0 (8)

In order to satisfy Eq. (8), the expressions in braces should be equal to zero independently. Thus, Eq. (8)
can be written in the following form:

(A4 21— BrAr)@s; + Bypr = 0 )
(’1+2ﬂ_ﬁ2As)§0s,jj+ﬁ3‘Ps =0 (10)
/’“ybi,jj+ﬁ3wi =0 (11)
where
2 2 24
pew 1w P 2, PF@
= =o+—7; =pw + 12
ﬁl n k ﬁz ﬁl ﬁ3 p ﬁl ( )
Substituting Egs. (2) and (3) into Eq. (5), one obtains
B
Pr,; — A_}Pf — (apy + py@ Juz; =0 (13)
Substituting Egs. (6) and (7) into Eq. (13), one has
[Ar @ ;i + (BsAr — Ba) @l + [As@s i + (BsAs — Ba)@s)s;; = 0 (14)
In order to satisfy Eq. (14), the expressions in braces should be equal to zero independently. Thus, one has
Arpp i + (BsAr — By)or = 0 (15)
Asqosﬁil + (BSAS - B4)(ps =0 (16)
where
By =0opy + waza Bs = —B/M (17)

From Egs. (9) and (10) and Egs. (15) and (16), one has

By — (24 2u)fs — B2y (A+2wW)By
5.Bs At g

From Egs. (9)—(11) and (15) and (16), each component ¢ and  must satisfy Helmholtz equation of the
following form:

Vi +kigr =0 (19)

A+ (18)



4298 J.H. Wang et al. | International Journal of Solids and Structures 42 (2005) 42954310

Vi, + ko, =0 (20)

VA k=0 (21)
where

ki = B3/ (2 + 21— Brd) = (BsAr — By) /A (22)

k= s/ (44 21— BoAs) = (BsAs — By) /4 (23)

ki = Bs/n (24)

where ki, ks, and k; are the complex wave numbers associated with the fast wave, slow wave, and shear
wave, respectively. If selecting Im(k¢,) > 0 to give a wave that decays as the wave propagates outward,
there is Re(kp) < Re(ks).

3. Expressions of displacements, stresses, and pore pressures

The expressions of displacements u; and w; (i = x, y) and pore pressure p; can be expressed as

_ 6(Pf a(ps % (25)

T T ox dy

Op;  Op, Oy
— s _ ¥ 26
" oy + Jdy Ox (26)
Op¢ Op oy
— s hdl 27
W 16x+26x+a16y (27)
Op O, oy
Wy =1 ayf M 3y — o o (28)

Oy Do, O
P 2 L :
g, = ;L(v [oF +V 905) + 2#( Ox2 + Ox2 T 6y6x> (29)

S o, Y
/I 2 2 ‘ 2 f s 30
O-y /l(v P + \Y ¢5) + ,l,l( ayz + ayz axay ( )

2 2 2 2

(et e Y

pr = —Ackipr — A o, (32)
where superscript (') denotes effective stress and

0 =o5 — oczAfk%, N, =0y — oczAskg, o = pfﬁllﬂz, o = —ﬁil (33)

If introducing complex variables z=x +1y, Z=x — iy and let y to represent polar coordinate rotary
angle, the displacements, stresses, and pore pressures are expressed as:
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) 0 CN i
Uz + 1y = 2@ (pp + g —itp)e™ (34)
) 0 DN i
Uz —luy = 2&(% + @, + iy)e” (35)
, 0 e
wy +iwy = 2 (n1@¢ + 105 — ity )e™” (36)
. 0 -
wy — iy =2~ (0105 + My + o1ih )" (37)
o .
0; —i0l = —(A+ WG +H00,) + p (o + o+ i) (38)
o :
0; 0l = —(2+ W) (ki +K0)) + 1 (or + oy — i)e™ (39)

As shown in the above equations, pore pressure is not changed in the new coordinate.

4. Solutions of boundary problems

For stress boundary problems, the two cases are considered: permeable boundary and impermeable
boundary. For permeable boundary, the pore pressure on the boundary of cavity is zero. For impermeable
boundary, the normal displacement of fluid relative to the solid matrix is zero.

Using Egs. (38) and (39), the stresses on the boundary of cavity can be expressed as

2

. d - .

Oz — 1045 = dr@Pp + 0P + 2 (or + 5 + llp)elw =N -1/ (40)
o ,

Ox + 10 = 0 + oy + 55 (or + oy —W)e M = fi +ifs (41)

where f| and f, are the normal and tangential total stresses and
o = adek? — (A + p)k? (42)
4 = Ak — (24 PR (43)
For permeable boundary, the pore pressure is zero. Eq. (32) can be written as
pr = —Aiki o — Akl p, = 0 (44)

For impermeable boundary, the normal displacement of fluid to solid matrix is zero. Substituting Eq.
(36) into Eq. (37), one obtains

0 . iy 0 : —iy
Wi = 2 (M@r + Mg+ nip)e” + — (mpr + e, —ai)e™ =0 (43)

Using Egs. (40) and (41) and Eq. (44) to solve the permeable boundary problems and Eqgs. (40) and (41)
and Eq. (45) to solve the impermeable boundary problem.
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5. Plane wave scatter of multiple cavities

Fig. 1 illustrates the problem of multiple cavities in saturated soil, which will be analyzed in this paper. In
the steady state case, the incident plane harmonic wave can be expressed as

@' = @, explik;s(xcos f 4 ysin f)]e ™ (46)

By introducing complex variables z = x + iy, Z = x — iy, the incident plane wave ¢’ can also be written as
the following formula:

ks
o' = @, exp[ 5 *(ze' + ze” ‘”)} ot (47)

where superscripts i denotes the incident components of the waves; k¢ s denotes incident fast wave and slow
wave, respectively; f§ is the angle of incident wave; ¢, is an amplitude of the incident wave.

For one scattering wave, the general solutions of Egs. (19) and (20) and Eq. (21) of the jth cavity may be
expressed in terms of Hankel function as follows.

o= 3 el () (43)

n=—00

%—Zkava (49)

n=—oo

Z%‘mmgy (50)

n=-—0o0

where superscripts s denotes the scatter components of the waves; H ’(11)(. -+) is the Hankel function of the
first kind of order n; aj,, b;, c;, are arbitrary functions to be determined from the boundary conditions
of the jth cavities (j =1 --- m).

Vi

O
di

Fig. 1. Multiple cavities in saturated half space.
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The total scatter waves can be expressed as

=Y anH bl IK ?y (51)

j=1 n=—oc

=3 3 b (229) (52)

': n=—0Q0

V=3 Y et - ah(E) (53)

j=1 n=—o0

where d} is the distance between the origin of jth cavities and the origin of total coordinate system. For mul-
tiple cavities of arbitrary shape in saturated soil, the total wave can be expressed as

<pf=<o§+2¢7j=<0§+<p§, ¢s=¢2+2¢§,=¢§+¢2, w:wzlp;:wfws (54)
j=1 j=1 J=1

6. Stress boundary problem of multiple cavities

For the jth cavities (j = 1,2,...,m), the stresses on the boundary of cavity can be expressed as
2

, d N .
Oy — 10y, = 0 ¢p + %P5 + 75 (pr + @y + i)™ = fi; — ify (55)
i

1 62 . iy, .
O3, + 1045, = % Qp + 05 + = (@ + @y —1p)e ™ = fi; +ify (56)
J

where fi; and f5; are the normal and tangential total stresses of the jth cavities.
In the local coordinate system (o, x;,;),z; = X; +1iy;, (j = 1,2,...,m), the curvilinear equation of the jth
cavities of arbitrary shape is as follows.

f(x.iayj) =0 (57)
The angle y; in arbitrary point on the boundary of cavities is
0f /0y,
- (212) .
7 af/axj
If selecting elliptic cavities as an example, the equation of the jth elliptic cavities can be expressed as
x2 y2
Flp) = 43510 (59)

<

J
where a and b are long axial radius and short axial radius, respectively.
On the boundary of the jth elliptic cavities
x;=r;jcos0, y,=r;sin0 (60)

r = e (61)

J
2 az. . 2
cos20 + 2 sin 0
J
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a?
=g 12160
J
i0

where y =y, z =z, +d;, z;=rg".
From Egs. (55) and (56), one obtains

m n=o0

3
SN B =ry (k=12 j=12,...,m)

p=1 i=l n=—o0
n—2
> 62i7j
Gl

n—2
) eZiy ;

where

Elyy = acH ) (kel2,) ( ) T weH kf|cl,|>(

\/\t

Bl = 2t (o) () -+ el (2
ij

U

. i\
E}3in = lluktan—Z(leijb (|C| e2 i
U

&Y A
E;Ii,,=afH2‘><kf|:f,»|>(¢f +HEH LG () e

| lj| Cij
1 1 C ! 27y(1) Gy " 2i
Ezzm s (k Ctj|)<|c |> +:ukan+2(kS|gz]|)(|C|> e W
ij ij

C n+2

2 —2iv.

Elyy = ik n+2<kl|é,,|>(|é |) o)
ij

. i i 62 i i ) iy
ry =Sy = iy — o) — %) — pa (0 + @)+ iY)e™
J

2
) . 0 ) ) . .
: i i i i s\ 421y
”2, S+ 1fo) — o — o505 — ‘uaéz (or + @, —1')e™
J
Xlin = Qin, Xoin = bina X3ip = Cip

where

&=z +d; —d;

Multiplying both sides of Eq. (63) with ¢ *’, and integrating on the interval [—

i Z ic Epxon=ry (k=12 j=12,...,m s=0,%1,42,..

p=1 i=1 n=-o0

)

7, 7], one obtains

(63)
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where

s 1 —is
E}Cﬁnzﬁ/ Ep,e'd0 (s=0,£1,%2,...) (75)

7_/ e do (s=0,%1,%2,...) (76)

For permeable boundary, the pore pressure of the jth cavities is zero and Eq. (44) can be written as
Py = _Afk%q)f _Askz(ps =0 (77)

For impermeable boundary, the normal displacement of fluid to solid matrix of the jth cavities is zero
and Eq. (45) can be written as

0 v 0O o
T, (M ¢ + Mg + oniy)e™ + %z, (M@ + Mg — ouith)e™ =0 (78)
Zj Zj

Solving Eq. (77), one obtains

ZZ Z pme’”: j (]Zlazavm) (79)

p=1 i=l n=—c
where
G\
B = ) elty) (2 (80
ij
2 _ 277(1) G\
E2in - _Askan (k5|gt]|) (81)
(e
r; = Aeki @t + Akl ¢} (82)
Multiplying both sides of Eq. (79) with e *’, and integrating on the interval [—=, 7], one obtains
2 m 00
S Enxw=rr (G=1,2,...,ms=0,£1,42,..) (83)
p=1 i=l n=—cc
s 1 7is
En = | Ere™d0 (s=0,%1,42,...) (84)
s 1 2 —196
rf I do (s=0,£1,£2,...) (85)

From Eq. (78), there is

3

S0 Y Bw=r G=12..m (36)

p=1 i=1 n=—oc

where

3 _”Ilkf "l i; mke C e —iy;
£ =T ()@ -t ( ) e (57)
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n—1 n+1
B = ﬁ ke ( & > i _ ’72k k, ( Gif ) —iy,
2in 2 ( |C11|) |é’,]‘ € ) ( |§l}|) |5U| e

_ ok ( & >’” g ok (@ >"“
B, = Kl &+ ki e
3in 2 (1|Cj|) |€U| 2 (1|Cj|) |CU|

a [ i ENFAPR R a i i At
r = =5, (Mm@t + 1@l + ol )e” — = (1 ¢p + nyepl — oy )e™
Zj Zj

Multiplying both sides of Eq. (86) with e, and integrating on the interval [—

3

ZZ ZE;jnx,,m: ¥o(j=1,2,...,m; s =0,£1,4£2,..))

=1 i=1 n=—

Present Study

I {\ 8la=2.5 = Gai (1985)
5

4 \Y
3/a=6.5
I \ v=0.25,b/a=2/3
-
> N\

\QLTDN -

e

0.0 0.5 1.0 1.5 2.0 2.5
Re(kf)a

Fig. 2. Comparison of calculated between present result and Gai (1985).

—
.

- ;|
-t Vl

A A

\ B Incident wave

Fig. 3. Inclusion of pressure wave to two same elliptic cavities in saturated soil.

7], one obtains
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1 i —is
E;f" - 2 /_n E;ine *do (S =0,+1,£2,.. ) (92)
1 " —isl
r;»vzﬁ 7 rle™d0 (s=0,%1,42,..) (93)

Eqs. (74), (83) and (91) form a set of infinite algebraic equations for determining the functions a;,, b;,, and
¢;u- Eqs. (74) and (83) are selected to solve the problem of permeable boundary and Eqs. (74) and (91) are
selected to solve the problem of impermeable boundary.

8/a=2.5
dla=2.5
8/a=6.5
d/a=6.5

270

Fig. 4. Distribution of stresses around boundary of left cavities in permeable condition (Re(kf)a = 0.1).

—8—Re(c) §/a=2.5
—a-Re(c) 8/a=2.5
—e—Re(c) 5/a=6.5
~e--Re(c) 8/a=6.5

920

1.5

1.0
0579 150
0.0
0.5
" 1.0+
-1.0 -
-0.5 4
0.0 .
4 |} -~
0.5 210 " ! / M S 330
1.0

15 e
270

Fig. 5. Distribution of stresses around boundary of left cavities in permeable condition (Re(kf)a = 1.0).
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7. Numerical results

In engineering practice, the dynamic stress concentration factor is most significant aspects in the study of
wave propagation in the saturated soil. In this study, dynamic stress concentration factors will be calculated
in the case of incident plane wave is fast wave. The dynamic stress concentration factor is defined as the
ratio of tangential effective stress to the maximum amplitude of the incident effective stress at the same
point

—m—Re(c ) 8/a=2.5
90 —w Im(c ) 8/a=2.5

12 S —e—Re(c ) 8/a=6.5
e |m(c ) 8/a=6.5

0.8

04
0.0
04
08
1180
08
0.4 i 1\.\. ‘ = Sl
0.0] ;
04
0.8

1.2+

270

Fig. 6. Distribution of stresses around boundary of left cavities in permeable condition (Re(kf)a = 2.0).

270

Fig. 7. Distribution of stresses around boundary of left cavities in impermeable condition (Re(kf)a = 0.1).
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=) 4
o= (94)

where
a0 = Re[— (4 + 2u)k; ¢y ©9)

For the case of impermeable condition, the pore pressure concentration factor is defined as the ratio of
the pore pressure on the boundary of cavity to the maximum amplitude of pore pressure at the same point

% —m—Re(c) 8/a=2.5
1.5

1.0

0.5+

0.0 30

054
104
G 5]
1.0
054
0.0+ 330
05

1.0 B

1.5

270

Fig. 8. Distribution of stresses around boundary of left cavities in impermeable condition (Re(kf)a = 1.0).

1.24

0.8+

0.4
0.0
04
* 08
08
04
0.0
0.4

0.8

1.2

270

Fig. 9. Distribution of stresses around boundary of left cavities in impermeable condition (Re(kf)a = 2.0).
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% f
pi=— 96
=t (9)
where
Pro = Re(_Afk%%) (97)

In order to confirm the accuracy of the present method, it is assumed that the saturated soil is the ideal
elastic medium. Fig. 2 shows a comparison of proposed solution with that reported by Gai (1985). As illus-
trated in Fig. 2, it is obviously that the accuracy of proposed solution is higher.

—=—Re(p,) 8/a=2.5
90 —=—Im(p,) 8/a=2.5
—e—Re(p,) 8/a=6.5
—e—Im(p,) 8/a=6.5

1.2 4

270

Fig. 10. Distribution of pore pressures around boundary of left cavities in impermeable condition (Re(kf)a = 0.1).

% —=—Re(p,) 8/a=2.5
34 —a—Im(p, ) 8/a=2.5
5] —e—Re(p, ) 8/a=6.5
1 -~ Im(p,) 8/a=6.5
B 150
04
-1
* _2;
Py 1180 0
-2
1
0] , :
1 210 330
1] N
2]
3]

270

Fig. 11. Distribution of pore pressures around boundary of left cavities in impermeable condition (Re(kf)a = 1.0).
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—=—Re(p,) 5/a=2.5
% —a—Im(p,) 8/a=2.5

Fig. 12. Distribution of pore pressures around boundary of left cavities in impermeable condition (Re(kf)a = 2.0).

In the following analyses, the problem of two elliptic cavities as illustrated in Fig. 3 is considered. The
two elliptic cavities are embedded in the saturated soil. The parameters are: ff = 90° p, = 2500 kg/m?;
pr=1000 kg/m*; n=0.3; pu=1.0x10"Pa; passion ratio v=04; o=0999; M=1.0x10%Pa;
n=10x10"2Pas; k=1.0x10"m? bla=0.75; /a=2.5, 6.5. Figs. 4-6 show the distributions of dy-
namic stress concentration factors along the boundary of left cavity under the cases of permeable condition
at dimensionless fast wave number Re(kg)a = 0.1, 1.0, 2.0. Figs. 7-12 show the distributions of dynamic
stress concentration factors and pore pressure concentration factors along the boundary of left cavity in
impermeable condition at Re(kp)a = 0.1, 1.0, 2.0.

8. Conclusions

The complex variable method has been employed to solve the problem of scattering of plane harmonic
wave by considering two elliptic cavities embedded in saturated soil. The result shows that the influence of
dimensionless distance 6/a and dimensional wave number Re(kr)a are more visible in the dynamic stress
concentration factors. When dimensionless wave number Re(kf)a = 0.1, the dynamic stresses at 6/a = 2.5
are greater than those at 6/a = 6.5. The dynamic stress concentration factors in permeable condition are
smaller than those in impermeable condition. The dynamic stresses and pore pressures decrease with the
incident wave number increasing. For the case of impermeable boundary condition, the pore pressures
are less than dynamic stresses.

Acknowledgement

The help from Dr. Shui-Long Shen and Mr. Jin-Jian Chen (Department of Civil Engineering, Shanghai
Jiao Tong University) are gratefully acknowledged. The authors also express their appreciation to the
reviewers and the Editors for their valuable comments and suggestions that help the authors refine and im-
prove the quality of this paper.



4310 J.H. Wang et al. | International Journal of Solids and Structures 42 (2005) 42954310
References

Biot, M.A., 1941. General theory of three dimensional consolidation. Journal of Applied Physics 12, 55-164.

Biot, M.A., 1956. Theory of propagation of elastic waves in a fluid—saturated porous solid, I, low frequency rang. Journal of the
Acoustical Society of America 28 (2), 168-178.

Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics 33 (4), 1482-1498.

Datta, S.K., Wong, K.C., Shah, A.H., 1984. Dynamic stress and displacement around cylindrical cavities of arbitrary shapes. Journal
of Applied Mechanics, ASME 51, 798-803.

Degrande, G., de Roeck, G., Van Broeck, P., Semulders, D., 1998. Wave propagation in layered dry, saturated and unsaturated
poroelastic media. International Journal of Solid and Structures 35, 4753-4778.

Gali, B.Z., 1985. The problem of the diffraction of the elastic wave by a group of elliptic cavities. Acta Mechanica Solid Sinica 3, 353—
359.

Gamer, U., 1977. Dynamic stress concentration in an elastic half space with a semi-circular cavity excited by SH waves. International
Journal of Solid and Structures 13, 675-681.

Kattis, S.E., Beskos, D.E., Cheng, A.H.D., 2003. 2D dynamic response of unlined and lined tunnels in poroelastic soil to harmonic
body waves. Earthquake Engineering and Structural Dynamics 32 (1), 97-110.

Liu, D.K., Gai, B.Z., Tao, G.Y., 1981. Discussion of the dynamic stress concentration nearby cavity. Acta Mechanica Sinica 12, 65-77.

Mei, C.C., Foda, M.A., 1981. Wave-induced responses in a fluid-filled poro-elastic solid with a free surface—A boundary layer theory.
Geophysics Journal of the Royal Astronomical Society 66, 597-631.

Mei, C.C., Si, B.I,, Cai, D.Y., 1984. Scattering of simple harmonic waves by a circular cavity in a fluid-filled treated poro-elastic
medium. Wave Motion 6 (3), 265-278.

Norris, A.N., 1985. Radiation from a point source and scattering theory in a fluid—saturated porous solid. Journal of the Acoustical
Society of America 77 (6), 2012-2023.

Sancar, S., Pao, Y.H., 1981. Spectral analysis of elastic pulses back scattered from two cylindrical cavities in a solid. Journal of the
Acoustical Society of America 69 (6), 1591-1596.

Zimmerman, C., Stern, M., 1993. Boundary element solution of 3-D wave scatter problems in a poroelastic medium. Engineering
Analysis with Boundary Elements 12, 223-240.

Zitron, N.R., 1967. Multiple scattering of elastic waves by two arbitrary cylinders. Journal of the Acoustical Society of America 42 (3),
620-624.



	Dynamic stress concentration around elliptic cavities in saturated poroelastic soil under harmonic plane waves
	Introduction
	Governing equations and general solutions
	Expressions of displacements, stresses, and pore pressures
	Solutions of boundary problems
	Plane wave scatter of multiple cavities
	Stress boundary problem of multiple cavities
	Numerical results
	Conclusions
	Acknowledgement
	References


